新澳门免费资料大全最新版本更新内容-新澳门免费资料大全历史记录开马-新澳门免费资料大全历史记录开奖-新澳门免费资料大全精准版下-新澳门免费资料大全精准版-新澳门免费资料大全

阻燃防火材料-網上貿易平臺 | | WAP瀏覽
服務熱線:4006555305
當前位置: 首頁 » 防火測試中心 » 各國標準法規 » 美國 » 正文

ASTM C1303閉室泡沫塑料絕緣長期熱阻預測用標準試驗方法

放大字體  縮小字體 發布日期:2012-02-13   瀏覽次數:140  分享到: 分享到騰訊微博
ASTM C1303閉室泡沫塑料絕緣長期熱阻預測用標準試驗方法
ASTM C1303 / C1303M Standard Test Method for Predicting Long-Term Thermal Resistance of Closed-Cell Foam Insulation
ASTM C1303閉室泡沫塑料絕緣長期熱阻預測用標準試驗方法
Rigid gas-filled closed-cell foam insulations include all cellular plastic insulations which rely on a blowing agent (or gas), other than air, for thermal resistance values. At the time of manufacture, the cells of the foam usually contain their highest percentage of blowing agent and the lowest percentage of atmospheric gases. As time passes, the relative concentrations of these gases change due primarily to diffusion. This results in a general reduction of the thermal resistance of the foam due to an increase in the thermal conductivity of the resultant cell gas mixture. These phenomena are typically referred to as foam aging.
For some rigid gas-filled closed-cell foam insulation products produced using blowing agent gases that diffuse very rapidly out of the full-thickness foam product, such as expanded polystyrene, there is no need to accelerate the aging process.
5.1.2 Physical gas diffusion phenomena occur in three dimensions. The one-dimensional form of the diffusion equations used in the development of this practice are valid only for planar geometries, that is, for specimens that have parallel faces and where the thickness is much smaller than the width and much smaller than the length.
Note 3—Please see Appendix X3 for a discussion of the theory of accelerated aging via thin slicing.
Note 4—Theoretical and experimental evaluations of the aging of insulation in radial forms, such as pipe insulation, have been made. (6) However, these practices have not evolved to the point of inclusion in the test standard.
The change in thermal resistance due to the phenomena described in 5.1 usually occurs over an extended period of time. Information regarding changes in the thermal resistance of these materials as a function of time is required in a shorter period of time so that decisions regarding formulations, production, and comparisons with other materials can be made.
Specifications C578, C591, C1029, C1126 and C1289 on rigid closed-cell foams measure thermal resistance after conditioning at 23 ± 1°C [73 ± 2°F] for 180 ± 5 days from the time of manufacture or at 60 ± 1°C [140 ± 2°F] for 90 days. This conditioning can be used for comparative purposes, but is not sufficient to describe long-term thermal resistance. This requirement demonstrates the importance of the aging phenomena within this class of products.
The Prescriptive Method in Part A provides long-term thermal resistance values on a consistent basis for a variety of purposes, including product evaluation, specifications, or product comparisons. The consistent basis for these purposes is provided by a series of specific procedural constraints, which are not required in the Research Method described in Part B. The values produced by the Prescriptive Method correspond to the thermal resistance at an age of five years, which corresponds closely to the average thermal resistance over a 15-year service life (7, 8).
It is recommended that any material standard that refers to C1303 to provide a product rating for long-term thermal resistance specify the Part A Test Method of C1303.
The Research Method in Part B provides a relationship between thermal conductivity, age, and product thickness. The calculation methods given in Part B can be used to predict the resistance at any specific point in time as well as the average resistance over a specific time period.
Note 5—The 5-year aged values produced in Part A can be derived from the Part B data only if all other Part A requirements are met.
This test method addresses three separate elements relating to the aging of rigid closed-cell plastic foams.
Specimen Preparation—Techniques for the preparation of thin flat specimens, including their extraction from the “as manufactured” product, and the measurement of specimen thickness are discussed.
Measurement of the Thermal Resistance—Thermal resistance measurements, taken at scheduled times, are an integral part of the test method.
Interpretation of Data—Procedures are included to properly apply the theory and techniques to achieve the desired goals.
1. Scope
1.1 This test method covers a procedure for predicting the long-term thermal resistance (LTTR) of unfaced or permeably faced rigid gas-filled closed-cell foam insulations by reducing the specimen thickness to accelerate aging under controlled laboratory conditions (1-5) .
Note 1—See Terminology, 3.2.1, for the meaning of the word aging within this standard.
1.2 Rigid gas-filled closed-cell foam insulation includes all cellular plastic insulations manufactured with the intent to retain a blowing agent other than air.
1.3 This test method is limited to unfaced or permeably faced, homogeneous materials. This method is applied to a wide range of rigid closed-cell foam insulation types, including but not limited to: extruded polystyrene, polyurethane, polyisocyanurate, and phenolic. This test method does not apply to impermeably faced rigid closed-cell foams or to rigid closed-cell bun stock foams.
Note 2—See Note 8 for more details regarding the applicability of this test method to rigid closed-cell bun stock foams.
1.4 This test method utilizes referenced standard test procedures for measuring thermal resistance. Periodic measurements are performed on specimens to observe the effects of aging. Specimens of reduced thickness (that is, thin slices) are used to shorten the time required for these observations. The results of these measurements are used to predict the long-term thermal resistance of the material.
1.5 The test method is given in two parts. The Prescriptive Method in Part A provides long-term thermal resistance values on a consistent basis that can be used for a variety of purposes, including product evaluation, specifications, or product comparisons. The Research Method in part B provides a general relationship between thermal conductivity, age, and product thickness.
1.5.1 To use the Prescriptive Method, the date of manufacture must be known, which usually involves the cooperation of the manufacturer.
1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.
1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents (purchase separately)
Other Standards
CAN/ULCS770 Standard Test Method for Determination of Long-Term Thermal Resistance of Closed-Cell Thermal Insulation Foams
ASTM Standards
C168 Terminology Relating to Thermal Insulation
C177 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
C578 Specification for Rigid, Cellular Polystyrene Thermal Insulation
C591 Specification for Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation
C1029 Specification for Spray-Applied Rigid Cellular Polyurethane Thermal Insulation
C1045 Practice for Calculating Thermal Transmission Properties Under Steady-State Conditions
C1126 Specification for Faced or Unfaced Rigid Cellular Phenolic Thermal Insulation
C1289 Specification for Faced Rigid Cellular Polyisocyanurate Thermal Insulation Board
D1622 Test Method for Apparent Density of Rigid Cellular Plastics
D6226 Test Method for Open Cell Content of Rigid Cellular Plastics
E122 Practice for Calculating Sample Size to Estimate, With Specified Precision, the Average for a Characteristic of a Lot or Process
Index Terms
aging; long-term thermal resistance; LTTR; rigid closed-cell plastic foams; scaling factors; thermal insulation; thermal resistance; time-averaged thermal resistance; Aging resistance; Controlled testing conditions/environments; Foamed-in-place thermal insulation; Long-term behavior/performance; Phenolic plastics; Polyisocyanurate insulation; Polystyrene (PS); Polyurethane insulation; Rigid closed cell plastic foams; Rigid thermal insulation; Scaling; Spray-applied thermal insulation; Thermal insulating materials; Thermal resistance/resistivity; Time-averaged thermal resistance; Unfaced thermal insulation;

  詳情請咨詢
  防火資源網-阻燃防火測試中心
  電話:(+86)0592-5056213
  傳真:(+86)0592-5105807
  郵件:firetest@firetc.com

凡注明"防火資源網"的所有作品,由<防火資源網>整理編輯,任何組織未經<防火資源網>及其擁有者授權,不得復制、轉載、摘編或利用其它方式應用于任何商業行為。

 
 
[ 防火測試中心搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關閉窗口 ]  [ 返回頂部 ]

 

 
 
推薦防火測試
推薦圖文
點擊排行
 
 
網站首頁 | 廣告服務 | 關于我們 | 聯系方式 | 服務協議 | 版權聲明 | 網站地圖 | 友情鏈接 | 網站留言 | 舊版本 | 閩ICP備09009213號
?2019-2021 FIRETC.COM All Rights Reserved ? 備案號:閩ICP備09009213號-1在線客服 點擊QQ交談/留言 點擊QQ交談/留言
主站蜘蛛池模板: 管家婆精准三肖三码期期准 | 2025年澳门斯诺克大师邀请赛定档12月 | 2025正版澳门全年免费 | 三五图库app下载下载安装v8.8.2 三五图库app下载 | 三码中特最全资料 | 三中三网站有公开的资料 | 澳门开奖结果2025开奖结果查询 | 246天天好免费资料大全 | 王中王资料大全枓大全正使用教 | 2025香港正版资料免费盾 | 2025惠泽社群香港资料大全 | 澳门六下彩资料网址最新下载 | 新澳门今天晚上买什么 | 新澳精准资料免费提供网 | 澳门正版资料免费大全2025年原创精华 | 二四六天天好彩免费资枓大全 | 2025香港开奖结果 | 彩图信封料一字特码(2025已更新 | 三期必出三期必出持免费日韩在线观看 | 今晚澳门特马开的什么号码图迷 | 香港资料大全正版资料使用 | 2025新奥开奖纪年详录 | 2025年澳门免费资料大全 | 二四六天天好彩毎期文字资料大全 | 新澳门4949精准免费大全021期36 新澳门2025最新饮料大全下载安装 | 2025年澳门免费资料大全 | 彩库宝典原版下载官网 | 管家婆四肖期期精选免费资料 | 49图库澳门资料大全v1.2.5 | 2025澳门天天开好彩大全获取关键词失败 | 2025澳门天天开好彩大全 | 一码一肖100%精准生肖第六 | 2025澳门六今晚开奖记录113期 | 澳彩正版资料长期免费公开吗 | 新澳门2025开奖结果记录 | 新澳精准资料免费提供510期精准资料 | 2025年澳门今晚必开一肖 | 三码中一码精准方法 | 七乐彩今晚专家预测 | 2025全年精准资料免费资料大全 | 白小姐三肖三期开奖软件功能 |