新澳门免费资料大全最新版本更新内容-新澳门免费资料大全历史记录开马-新澳门免费资料大全历史记录开奖-新澳门免费资料大全精准版下-新澳门免费资料大全精准版-新澳门免费资料大全

阻燃防火材料-網(wǎng)上貿(mào)易平臺 | | WAP瀏覽
服務(wù)熱線:4006555305

ASTM D4529航空燃料燃燒凈熱值的評價的標(biāo)準(zhǔn)試驗方法

放大字體  縮小字體 發(fā)布日期:2012-02-07   瀏覽次數(shù):216  分享到: 分享到騰訊微博
ASTM D4529航空燃料燃燒凈熱值的評價的標(biāo)準(zhǔn)試驗方法
ASTM D4529 Standard Test Method for Estimation of Net Heat of Combustion of Aviation Fuels
ASTM D4529航空燃料燃燒凈熱值的評價的標(biāo)準(zhǔn)試驗方法
This test method is intended for use as a guide in cases where an experimental determination of heat of combustion is not available and cannot be made conveniently, and where an estimate is considered satisfactory. It is not intended as a substitute for experimental measurements of heat of combustion (Note 2).
Note 2—The procedures for the experimental determination of the gross and net heats of combustion are described in Test Methods D 240 and D 4809.
The net heat of combustion is a factor in the performance of all aviation fuels. Because the exhaust of aircraft engines contains uncondensed water vapors, the energy released by fuel in vaporizing water cannot be recovered and must be subtracted from gross heat of combustion determinations to calculate net heat of combustion. For high performance weight-limited aircraft, the net heat of combustion per unit mass and the mass of fuel loaded determine the total safe range. The proper operation of the aircraft engine also requires a certain minimum net energy of combustion per unit volume of fuel delivered.
Because the heat of combustion of hydrocarbon fuel-mixtures are slowly varying functions of the physical properties of the mixtures, the heat of combustion of the mixtures can often be estimated with adequate accuracy from simple field tests of density and aniline point temperature, without the elaborate apparatus needed for calorimetry.
The empirical quadratic equation for the net heat of combustion of a sulfur-free fuel was derived by the method of least squares from accurate measurements on fuels, most of which conformed to specifications for fuels found in Note 1 and were chosen to cover a range of values of properties. Those fuels not meeting specifications were chosen to extend the range of densities and aniline-point temperatures above and below the specification limits to avoid end effects. The sulfur correction was found by a simultaneous least-squares regression analysis of sulfur-containing fuels among those tested.
1. Scope
1.1 This test method covers the estimation of the net heat of combustion at constant pressure in metric (SI) units, megajoules per kilogram.
1.2 This test method is purely empirical, and it is applicable only to liquid hydrocarbon fuels derived by normal refining processes from conventional crude oil which conform to the requirements of specifications for aviation gasolines or aircraft turbine and jet engine fuels of limited boiling ranges and compositions as described in Note 1.
Note 1—The estimation of the net heat of combustion of a hydrocarbon fuel from its aniline point temperature and density is justifiable only when the fuel belongs to a well-defined class for which a relationship between these quantities has been derived from accurate experimental measurements on representative samples of that class. Even in this class, the possibility that the estimates can be in error by large amounts for individual fuels should be recognized. The JP-8 fuel, although not experimentally tested, has properties similar to JP-5 and Jet A fuels and can be considered in the same class. The classes of fuels used to establish the correlation presented in this test method are represented by the following applications:
1.3 The net heat of combustion can also be estimated by Test Method D 1405. Test Method D 1405 requires calculation of one of four equations dependent on the fuel type with the precision equivalent to that of this test method.
1.4 The values stated in acceptable metric units are to be regarded as the standard.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
2. Referenced Documents (purchase separately)
ASTM Standards
D129 Test Method for Sulfur in Petroleum Products (General Bomb Method)
D240 Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter
D611 Test Methods for Aniline Point and Mixed Aniline Point of Petroleum Products and Hydrocarbon Solvents
D910 Specification for Aviation Gasolines
D941 Test Method for Density and Relative Density (Specific Gravity) of Liquids by Lipkin Bicapillary Pycnometer
D1217 Test Method for Density and Relative Density (Specific Gravity) of Liquids by Bingham Pycnometer
D1250 Guide for Use of the Petroleum Measurement Tables
D1266 Test Method for Sulfur in Petroleum Products (Lamp Method)
D1298 Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method
D1405 Test Method for Estimation of Net Heat of Combustion of Aviation Fuels
D1655 Specification for Aviation Turbine Fuels
D2622 Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-ray Fluorescence Spectrometry
D3120 Test Method for Trace Quantities of Sulfur in Light Liquid Petroleum Hydrocarbons by Oxidative Microcoulometry
D4052 Test Method for Density and Relative Density of Liquids by Digital Density Meter
D4294 Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry
D4809 Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method)
D5453 Test Method for Determination of Total Sulfur in Light Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet Fluorescence
D6227 Specification for Grade 82 Unleaded Aviation Gasoline
U.S. Military Standards
MIL-DTL-83133 Aviation Turbine Fuel, Kerosene Types, NATO F-34 (JP-8), NATO F-35, and JP-8+100
Directorate of Standardization, Ministry of Defence
DEFSTAN91–91 Aviation Turbine Fuel, Kerosene Type, Jet A-1
NATO Codes
F-44 Aviation Turbine Fuel, Grade JP-5
Index Terms
aviation fuel; gross heat of combustion; heat energy; heat of combustion; heating tests; net heat of combustion;

  詳情請咨詢
  防火資源網(wǎng)-阻燃防火測試中心
  電話:(+86)0592-5056213
  傳真:(+86)0592-5105807
  郵件:firetest@firetc.com

凡注明"防火資源網(wǎng)"的所有作品,由<防火資源網(wǎng)>整理編輯,任何組織未經(jīng)<防火資源網(wǎng)>及其擁有者授權(quán),不得復(fù)制、轉(zhuǎn)載、摘編或利用其它方式應(yīng)用于任何商業(yè)行為。

 
 
[ 防火測試中心搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關(guān)閉窗口 ]  [ 返回頂部 ]

 

 
 
推薦防火測試
推薦圖文
點擊排行
 
 
網(wǎng)站首頁 | 廣告服務(wù) | 關(guān)于我們 | 聯(lián)系方式 | 服務(wù)協(xié)議 | 版權(quán)聲明 | 網(wǎng)站地圖 | 友情鏈接 | 網(wǎng)站留言 | 舊版本 | 閩ICP備09009213號
?2019-2021 FIRETC.COM All Rights Reserved ? 備案號:閩ICP備09009213號-1在線客服 點擊QQ交談/留言 點擊QQ交談/留言
主站蜘蛛池模板: 2025全年资料免费大全优势 | 49图库app下载官方版下载 | 118彩色厍图最新版下载 | 彩库宝典资料大全免费下载官网 | 今天澳门开什么号码了 | 澳门2025年资料免费 | 2025年今期管家婆图片 | 49图库app下载安装官方安卓版下 | 新澳大全2025正版资料 | 2025年新澳版资料正版图库 | 港澳宝典官网下载有图片吗 | 2025年香港正版资料免费大全 | 澳门一码一肖一特一中准选今晚 | 2025澳门女单决赛时间 | 红姐聊天室 | 2025年今晚开码全攻略 | 澳门综合资料最准摇钱树 | 626969澳彩资料大全2025年老玩家 | 246天天彩9944cc精选香港王中王 246天天彩9944cc精选 | 正版澳门管家婆资料大全波币 | 4999999香港王中王中特网 | 49图库app软件合集 | 管家婆四肖八码期期稳准 | 2025澳彩管家婆资料传真 | 今晚一定出准确生肖 | 一码一肖的解释 | 新澳门彩2025全年资料免费公开 | 2025年澳门特区政府施政报告亮点 | 管家婆必出一肖一码 | 2025澳门彩历史开奖记录 | 澳门金光佛四肖中特 | 澳门六和彩今晚开结果 | 澳门资料库最新消息 | 2025年澳门今晚开奖结果历史 | 2025澳门彩免费资料大全 | 246天天天彩天好彩资料大全246 | 彩库宝典官网网址是多少 | 新澳全年免费资料大全 | 2025今晚开的四不像生肖图 | 2025全年资料免费看 | 高校龙中龙无修版 |