新澳门免费资料大全最新版本更新内容-新澳门免费资料大全历史记录开马-新澳门免费资料大全历史记录开奖-新澳门免费资料大全精准版下-新澳门免费资料大全精准版-新澳门免费资料大全

阻燃防火材料-網上貿易平臺 | | WAP瀏覽
服務熱線:4006555305
當前位置: 首頁 » 防火測試中心 » 各國標準法規 » 美國 » 正文

ASTM E2060無機廢物固化/穩定用煤燃燒產品使用標準指南

放大字體  縮小字體 發布日期:2012-02-08   瀏覽次數:51  分享到: 分享到騰訊微博
ASTM E2060無機廢物固化/穩定用煤燃燒產品使用標準指南
ASTM E2060  Standard Guide for Use of Coal Combustion Products for Solidification/Stabilization of Inorganic Wastes
ASTM E2060無機廢物固化/穩定用煤燃燒產品使用標準指南
1. Scope
1.1 This guide covers methods for selection and application of coal combustion products (CCPs) for use in the chemical stabilization of trace elements in wastes and wastewater. These elements include, but are not limited to, arsenic, barium, boron, cadmium, chromium, cobalt, lead, molybdenum, nickel, selenium, vanadium, and zinc. Chemical stabilization may be accompanied by solidification of the waste treated. Solidification is not a requirement for the stabilization of many trace elements, but does offer advantages in waste handling and in reduced permeability of the stabilized waste.
1.1.1 Solidification is an important factor in treatment of wastes and especially wastewaters. Solidification/Stabilization (S/S) technology is often used to treat wastes containing free liquids. This guide addresses the use of CCPs as a stabilizing agent without the addition of other materials; however, stabilization or chemical fixation may also be achieved by using combinations of CCPs and other products such as lime, lime kiln dust, cement kiln dust, cement, and others. CCPs used alone or in combination with other reagents promote stabilization of many inorganic constituents through a variety of mechanisms. These mechanisms include precipitation as carbonates, silicates, sulfates, and so forth; microencapsulation of the waste particles through pozzolanic reactions; formation of metal precipitates; and formation of hydrated phases (). Long-term performance of the stabilized waste is an issue that must be addressed in considering any S/S technology. In this guide, several tests are recommended to aid in evaluating the long-term performance of the stabilized wastes.
1.2 The CCPs that are suited to this application include fly ash, spent dry scrubber sorbents, and certain advanced sulfur control by-products from processes such as duct injection and fluidized-bed combustion (FBC).
1.3 The wastes or wastewater, or both, containing the problematic inorganic species will likely be highly variable, so the chemical characteristics of the waste or wastewater to be treated must be determined and considered in the selection and application of any stabilizing agent, including CCPs. In any waste stabilization process, laboratory-scale tests for compatibility between the candidate waste or wastewater for stabilization with one or more selected CCPs and final waste stability are recommended prior to full-scale application of the stabilizing agent.
1.4 This guide does not intend to recommend full-scale processes or procedures for waste stabilization. Full-scale processes should be designed and carried out by qualified scientists, engineers, and environmental professionals. It is recommended that stabilized materials generated at the full-scale stabilization site be subjected to testing to verify laboratory test results.
1.5 The utilization of CCPs under this guide is a component of a pollution prevention program; Guide E 1609 describes pollution prevention activities in more detail. Utilization of CCPs in this manner conserves land, natural resources, and energy.
1.6 This guide applies only to CCPs produced primarily from the combustion of coal. It does not apply to ash or other combustion products derived from the burning of waste; municipal, industrial, or commercial garbage; sewage sludge or other refuse, or both; derived fuels; wood waste products; rice hulls; agricultural waste; or other noncoal fuels.
1.7 Regulations governing the use of CCPs vary by state. The user of this guide has the responsibility to determine and comply with applicable regulations.
1.8 It is recommended that work performed under this guide be designed and carried out by qualified scientists, engineers, and environmental professionals.
This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents (purchase separately)
ASTM Standards
C114 Test Methods for Chemical Analysis of Hydraulic Cement
C311 Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete
C400 Test Methods for Quicklime and Hydrated Lime for Neutralization of Waste Acid
D75 Practice for Sampling Aggregates
D422 Test Method for Particle-Size Analysis of Soils
D558 Test Methods for Moisture-Density (Unit Weight) Relations of Soil-Cement Mixtures
D653 Terminology Relating to Soil, Rock, and Contained Fluids
D1556 Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method
D1633 Test Methods for Compressive Strength of Molded Soil-Cement Cylinders
D1635 Test Method for Flexural Strength of Soil-Cement Using Simple Beam with Third-Point Loading
D2166 Test Method for Unconfined Compressive Strength of Cohesive Soil
D2216 Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass
D2922 Test Methods for Density of Soil and Soil-Aggregate in Place by Nuclear Methods (Shallow Depth)
D2937 Test Method for Density of Soil in Place by the Drive-Cylinder Method
D3441 Test Method for Mechanical Cone Penetration Tests of Soil
D3877 Test Methods for One-Dimensional Expansion, Shrinkage, and Uplift Pressure of Soil-Lime Mixtures
D3987 Test Method for Shake Extraction of Solid Waste with Water
D4318 Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
D4842 Test Method for Determining the Resistance of Solid Wastes to Freezing and Thawing
D4843 Test Method for Wetting and Drying Test of Solid Wastes
D4972 Test Method for pH of Soils
D5084 Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter
D5239 Practice for Characterizing Fly Ash for Use in Soil Stabilization
E1609 Guide for Development and Implementation of a Pollution Prevention Program
Index Terms


  詳情請咨詢
  防火資源網-阻燃防火測試中心
  電話:(+86)0592-5056213
  傳真:(+86)0592-5105807
  郵件:firetest@firetc.com

凡注明"防火資源網"的所有作品,由<防火資源網>整理編輯,任何組織未經<防火資源網>及其擁有者授權,不得復制、轉載、摘編或利用其它方式應用于任何商業行為。

 
 
[ 防火測試中心搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關閉窗口 ]  [ 返回頂部 ]

 

 
 
推薦防火測試
推薦圖文
點擊排行
 
 
網站首頁 | 廣告服務 | 關于我們 | 聯系方式 | 服務協議 | 版權聲明 | 網站地圖 | 友情鏈接 | 網站留言 | 舊版本 | 閩ICP備09009213號
?2019-2021 FIRETC.COM All Rights Reserved ? 備案號:閩ICP備09009213號-1在線客服 點擊QQ交談/留言 點擊QQ交談/留言
主站蜘蛛池模板: 新版澳门四不像2025 | 正版49图库最新免费下载2025 | 周公神算精准30码爆特 | 香港宝典全年资料大全2025 | 香港一肖一码中 | 澳门精选免费资料大全下载 | 今天澳门买什么 | 港澳宝典官网下载有图片吗 | 香港大型免费六台彩图库 | 2025年的澳门一肖关 | 澳门六开奖最新开奖结果2025年 | 今天澳门今晚马出什么 | 新奥2025全年免费资料资料大全 | 澳三肖三码精准100% | 2025马会资料传真图第十五期视频 | 四肖三期必開 | 香港6合宝典旧版手机免费 香港6合宝典旧版手机版4.2.2 | 澳门正版资料全年免费公开精准资料一 | 2025新澳门六开彩天天开 | 2025澳门免费资料大全今晚 | 7777788888管家婆精准 | 澳门精准的资料大全一肖一码 | 澳门正版资料大全 | 打开澳门网站资料 | 品特轩香港79876 | 一肖三码 | 澳门2025年全年免费资料 | 2025年香港正版资料大全完整版下载 | 澳门内部资料与公开资料 | 2025年新澳门最新车 | 管家婆精准三肖三码期期准 | 澳门资料大全正版资料今天的 | 澳门一肖一码最准一码 | 2025年澳门正版资料大全最新版下载 | 新2025澳门兔费资料:猪 | 港澳宝典| 2025今晚新澳开奖号码查询与解析攻略 | 澳门今晚开什么号码 | 49图库资料免费大全资料澳门 | 新奥门特免费资料大全火凤凰 | 2025年彩票全年资料永乐 |