新澳门免费资料大全最新版本更新内容-新澳门免费资料大全历史记录开马-新澳门免费资料大全历史记录开奖-新澳门免费资料大全精准版下-新澳门免费资料大全精准版-新澳门免费资料大全

阻燃防火材料-網上貿易平臺 | | WAP瀏覽
服務熱線:4006555305
當前位置: 首頁 » 防火測試中心 » 各國標準法規 » 美國 » 正文

ASTM C447評估隔熱材料的最高使用溫度的操作標準

放大字體  縮小字體 發布日期:2012-02-13   瀏覽次數:300  分享到: 分享到騰訊微博
ASTM C447評估隔熱材料的最高使用溫度的操作標準
ASTM C447 Standard Practice for Estimating the Maximum Use Temperature of Thermal Insulations
ASTM C447評估隔熱材料的最高使用溫度的操作標準
This practice is intended for use as a guide in evaluating the behavior of insulations at elevated temperatures, and in judging suitability for use under the conditions of an intended application. It is not intended for acceptance or certification testing on a lot basis.
No single test for estimating maximum use temperature can be used that will apply to all types of insulations, nor can any single maximum use temperature be applied to any insulation that will be applicable under all possible conditions of use. Maximum use temperature may depend on thickness, temperature gradient, heating rate, and other factors. When the various test methods listed herein are employed, the test results serve as guides and, as such, must be applied with good engineering judgment in arriving at an acceptable temperature limit for the products and applications being considered.
The criteria used to establish acceptable performance is provided in the material specification or as agreed upon between the purchaser and seller.
In most cases, the properties covered by the applicable material standards (for example, thermal transmission, strength, etc.) are the properties important to the end use of the product. Major changes in those properties resulting from in-service conditions can cause failure or substandard performance of the installed system.
Unless removal and reuse of the insulation is an important consideration, properties that relate primarily to handling and installation shall be eliminated from the evaluation.
Note 1—Installation assemblies: some systems create conditions that will affect the performance from the data obtained in the test procedures of this practice.
The listing of a test procedure in this practice does not imply that the performance of that particular procedure is required. Only those tests which are relevant to the requirements of the application involved, or which are agreed upon between the purchaser and the seller are preformed.
Most of the changes that occur in the functionally important characteristics of all types of thermal insulation during service result from changes in the matrix or binder system first, followed by changes in the bulk filler materials where such fillers have been used.
In general, these changes are temperature-dependent and the major portion of the change takes place fairly quickly once the critical temperature has been reached.
Typically, organic thermoplastic materials or binders will change in the 140 to 240°F (60 to 116°C) temperature range. Thermosetting organic materials or binders will start to deteriorate above 350°F (177°C). Hydrated inorganic binders such as clays, portland and lumnite cements, gypsum, sodium silicates, oxysulfates, and oxychlorides will lose varying amounts of water of crystallization at temperatures from 250 to 900°F (121 to 482°C) dependent on the compound involved. Glass fibers and glass foams may start to sinter around 1000°F (538°C). Rock or slag wools, perlites and refractory fibers may show change at temperatures in excess of 1300°F (704°C) dependent on specific composition.
If, after testing samples exposed to the maximum service temperature, additional tests are made of samples exposed to intermediate temperatures (third or quarter points in the full service temperature range), the results of such tests, when plotted with proper curve fit techniques, may give some indication of changes in product characteristics throughout the service range. These results may also be used to bracket the temperature range within which a change has occurred (significant change in slope of curve).
Some properties of thermal insulations containing trapped gases other than air change with time, and at different rates, depending upon the age, thickness, facing and boundary conditions. Elevated temperature exposure accelerates these changes. Changes in properties of these materials may continue over a very long period of time, however, and it is beyond the scope of this recommended practice to establish a minimum time period for evaluation of these long-term changes.
1. Scope
1.1 This practice covers estimation of the maximum use temperature of thermal insulation including loose fill, blanket, block, board, and preformed pipe insulation. It is based upon selected performance criteria, and characterization of product properties during and after use conditions.
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.
1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents (purchase separately)
ASTM Standards
C165 Test Method for Measuring Compressive Properties of Thermal Insulations
C167 Test Methods for Thickness and Density of Blanket or Batt Thermal Insulations
C168 Terminology Relating to Thermal Insulation
C177 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus
C203 Test Methods for Breaking Load and Flexural Properties of Block-Type Thermal Insulation
C302 Test Method for Density and Dimensions of Preformed Pipe-Covering-Type Thermal Insulation
C303 Test Method for Dimensions and Density of Preformed Block and Board-Type Thermal Insulation
C335 Test Method for Steady-State Heat Transfer Properties of Pipe Insulation
C411 Test Method for Hot-Surface Performance of High-Temperature Thermal Insulation
C421 Test Method for Tumbling Friability of Preformed Block-Type and Preformed Pipe-Covering-Type Thermal Insulation
C446 Test Method for Breaking Load and Calculated Modulus of Rupture of Preformed Insulation for Pipes
C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus
D1621 Test Method for Compressive Properties of Rigid Cellular Plastics
D1622 Test Method for Apparent Density of Rigid Cellular Plastics
Index Terms
hot surface performance; maximum use temperature; thermal insulation; Block and board thermal insulation; Maximum use temperature; Pipe thermal insulation; Soak testing; Temperature tests--thermal insulation; Thermal insulating materials ;

  詳情請咨詢
  防火資源網-阻燃防火測試中心
  電話:(+86)0592-5056213
  傳真:(+86)0592-5105807
  郵件:firetest@firetc.com

凡注明"防火資源網"的所有作品,由<防火資源網>整理編輯,任何組織未經<防火資源網>及其擁有者授權,不得復制、轉載、摘編或利用其它方式應用于任何商業行為。

 
 
[ 防火測試中心搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關閉窗口 ]  [ 返回頂部 ]

 

 
 
推薦防火測試
推薦圖文
點擊排行
 
 
網站首頁 | 廣告服務 | 關于我們 | 聯系方式 | 服務協議 | 版權聲明 | 網站地圖 | 友情鏈接 | 網站留言 | 舊版本 | 閩ICP備09009213號
?2019-2021 FIRETC.COM All Rights Reserved ? 備案號:閩ICP備09009213號-1在線客服 點擊QQ交談/留言 點擊QQ交談/留言
主站蜘蛛池模板: 管家婆一肖一码100%中奖澳门最新版下载 | 一肖一码1OO%中奖澳门 | 澳门今晚开什么买什么 | 二四六天天好资料大全 玄机图 | 香港资料大全 正版资料 | 澳门今晚九点30分开奖021期4 | 2025今晚新澳六我奖 | 2025澳门今晚开奖结果是多少 | 澳门三肖三码精准 | 管家婆一肖一码100中奖技巧 | 刘伯温十码三期必开一期 | 家书抵万金是什么生肖 | 金光佛论坛一码金光佛96294 | 澳门今晚一肖一码必中(中国)官方网站 | 2025年香港今晚开什么特马 | 二四六天天好彩944cc | 最准一肖一码100中特揭秘 | 水果奶奶一码一肖手机论坛 | 2025今晚开码结果 | 天下彩正版资料天空app免费下载安 | 澳门六开彩天天免费资料大全图 | 澳门2025免费资料大全精准版 | 2025澳门传真澳门传真网站 | 澳利澳6肖期18码网站 | 曾道人必出一肖 | 118黑白彩图印刷区 118彩图图库免费 | 澳门六开奖结果2025开奖记录今晚直播 | 香港最准内部免费公开appv | 2025新澳精准资料免费 | 新澳门天天免费精准大全 | 聚宝盆丽萍数据大红鹰 | 澳门资料库_澳门资料库48k | 2025年正版资料免费大全一肖 | 2025新澳天天资料免费大全 | 今期香港开奖结果记录 | 黄大仙三肖三码期必开一码 | 香港正版资料全年最新版春节app | 2025新澳开奖记录 | 2025157期凤凰快报 | 白小姐精准一肖一特 | 小鱼儿玄机二站资料论坛 |